Microsoft
MLOps and responsible AI practices
Microsoft

MLOps and responsible AI practices

 Microsoft

Instructor: Microsoft

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

There are 4 modules in this course

This module introduces the core principles of MLOps (machine learning operations), such as automation and reproducibility. Learners will explore the complete AI model lifecycle, from initial setup to deployment, and learn to manage these stages effectively using Azure ML and tools like MLflow.

What's included

5 videos6 readings3 assignments

This module focuses on automating the AI development process. You will be introduced to the fundamentals of version control with Git, a critical skill for any professional developer. To support learners who may be new to this tool, this module will provide a practical guide to essential commands and demonstrate their use within Azure Repos. With this foundation, you will then build an end-to-end Continuous Integration/Continuous Deployment (CI/CD) pipeline in Azure to automatically train, validate, and deploy your models, turning your manual workflow into a robust, automated system.

What's included

3 videos5 readings3 assignments

This module addresses the critical post-deployment phase of MLOps. Learners will implement robust monitoring and logging frameworks using tools like Azure Monitor, Application Insights, and MLflow to track model performance and ensure reliability. Additionally, they will explore and apply practical strategies for managing and optimizing the costs associated with training and hosting AI models in Azure.

What's included

3 videos6 readings3 assignments

This module focuses on the critical importance of building trustworthy and ethical AI. Learners will explore foundational ethical principles like fairness and transparency. They will then learn to operationalize these concepts using Microsoft's Responsible AI framework and Azure's built-in tools to assess, track, and mitigate issues like bias in generative models.

What's included

4 videos5 readings2 assignments

Instructor

 Microsoft
256 Courses2,087,520 learners

Offered by

Microsoft

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Coursera Plus

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions